VERO VISI 2020 | 3.5 Gb
Vero Software announces the availability of VISI 2020. The latest release provides a wide variety of new and enhanced items of functionality for both CAD and CAM, specifically for the mold and die market. VISI is acknowledged as one of the worlds leading PC-based CAD/CAM solutions for the mold & die industries. It offers a unique combination of applications, fully integrated wireframe, surface and solid modeling, and comprehensive 2D, 3D, and 5-axis machining strategies with dedicated high speed routines. Industry-specific applications for plastic injection tool design, including material flow analysis and progressive die design with step-by-step unfolding, provide the toolmaker with unsurpassed levels of productivity. Vero Software offers dedicated solutions that eliminate the links between varying software suppliers and the solid-to-surface or CAD/CAM geometry conversions required by traditional systems. VISI Progress - 渐进式模具设计和冲压工具的专用解决方案 行业特定功能提供更高效和高效的设计体验。帮助设计人员做出明智的决策将减少出错的可能性并大大提高制造生产率。 功能一览: - 可变中性纤维计算
- 零件分析和弯曲研究
- 自动空白开发
- 一步一步展开
- 3D条带设计和剪切模拟
- 弯曲和剪切应力计算
- 用户定义的工具模板
- 参数化组件库
- 自动链接到制版
- 关联工具细节
- 自动BOM创建
广泛的CAD界面。VISI可以直接使用Parasolid,IGES,CATIA,Creo,UG-NX,STEP,Solid Works,Solid Edge,Inventor,ACIS,DXF,DWG,JT Open,STL和VDA文件。广泛的翻译人员确保用户可以处理来自几乎所有供应商的数据。在导入过程中跳过损坏记录的能力提供了一个可以管理最不一致数据的平台。可以轻松处理非常大的文件,使用复杂设计的公司将受益于客户CAD数据的易操作性。
真正的混合建模。VISI提供了一个动态结构,可以在不受任何限制的情况下使用实体,曲面,线框或三者的组合。实体建模已成为设计的基础,但通常仅限于棱柱形或基本几何形状。实体建模命令包括布尔技术,如联合,减法,拉伸,旋转,扫掠,腔,交叉和空心。然而,曲面技术为工具和技术提供了不同的设置,以实现更有机,自由形式的几何创建。曲面建模功能包括直纹,放样,驱动,扫掠,n面贴片,悬垂,切线,拔模,旋转和管道表面。这些建模命令与高级曲面编辑相结合,可以轻松修复导入的几何图形或构建最复杂的3D数据。
强大的展开工具。VISI Progress可以使用强大的基于几何体的展开算法展开曲面和实体模型。开发的毛坯基于通过选择标准偏移比之一或使用自动中性轴公式计算的中性纤维模型。逐步展开允许设计者通过动态调整弯曲角度来规划每个成形阶段。可以结合参数特征,例如可以在成形阶段根据需要激活或停用的肋和凸台。灵活的编辑允许删除或添加额外的阶段,为用户提供完全自由的展开实验。弹回。 当从模具中取出钣金零件并释放成形力时,材料弹性将导致零件几何形状经历回弹。回弹预测工具使用起始标称零件,材料数据和空白计算来生成产品几何的第二个网格,包括回弹调整。然后,设计者可以使用相对补偿工具在原始曲面组上实现变形,以生成补偿曲面,从而生成精确的钣金零件。这将通过缩短“设计到制造”流程的时间,并通过降低解决这一长期存在的行业问题的典型试错方法的成本,为模具市场带来重大好处。在验证零件的可成形性时,新的图形分析表示模式会将结果细分为在成形过程中出现的六个可能的区域:- 强烈的皱纹倾向 - 在一个方向上轻微拉伸,在另一个方向上压缩,材料增厚。皱纹很可能发生。
- 起皱倾向 - 在一个方向上拉伸,在另一个方向上压缩,轻微的材料。增厚。可能会出现皱纹。
- 低应变 - 在主要或次要方向上的最小拉伸或压缩。
- 安全 - 低于形成极限曲线的区域,不太可能发生故障。
- 边际 - 安全区和失效区之间的区域,其中形成过程是安全的。
- 失败 - 形成极限曲线的区域可能发生分裂(局部稀疏)。
灵活的条带布局。从开发的组件空白开始,可以快速制定3D条带布局。自动空白对齐,旋转和优化有助于规划更高效的条带。使用自动2D条带计划(包括折叠线),打孔设计和布局变得更加有效。各种自动和半自动工具有助于创建剪切冲头,一旦创建,就可以使用拖放动态地将其移动到条带中的不同阶段。将3D折叠阶段放置到条带中是一个无缝过程,并且可以容易地更新条带以适应阶段数量的减少或增加。在任何时候都可以访问所有的条带参数,包括条带宽度和间距,以便在需要时进行必要的修改。
物质经济和力量计算。当将显影的毛坯与工具内每个工位使用的实际材料进行比较时,将自动计算条带布局的经济性(材料浪费)。还提供了成功工具设计所必需的关键力,包括剪切力,弯曲力和剥离力计算,这些都是根据3D模型及其材料属性计算出来的。这些力可以针对整个工具进行全局计算,也可以针对特定站进行本地计算。
工具装配。工具组件允许设计者快速构建所需垫板的基于实体的布局以及必要的支柱和衬套布置。访问每个单独板的参数可确保快速有效地修改工具布局。工具组件通常包括压力机工具正确操作所需的所有关键数据,包括压力冲程,带钢冲程,冲头高度和工具冲程信息。每个组件可以存储为工具模板,或者可以从常用工具标准列表中选择模板。然后可以应用模板以适应另一条带布局,自动使工具适应新条带的尺寸。
参数化组件库。VISI Progress支持所有领先的Progressive Die Tooling组件供应商的标准零件库,包括Misumi,Futaba,AW Precision,Fibro,Strack,Danly,Rabourdin,Mandelli,Sideco,Intercom,Bordignon,Dadco,Dayton,Din,Kaller,Lamina, Lempco,MDL,Pedrotti Special Spring,Superior,Tipco,Uni和Victoria。专有的参数化组件库可以快速准确地放置每个标准组件,并确保在项目期间的任何阶段都可以进行修改。每个组件都有一个完整的可编辑参数列表,可根据个别工具要求进行必要的调整; 这包括为每个组件创建间隙孔。所有组件都带有制造数据属性和完整的零件清单行程。
非标准冲床管理。完全自动化的方法可以创建非标准冲头,用于修剪和成型操作,从而实现简单高效的设计。自动冲压挤压确保在整个工具组件的每个板中正确指定所有间隙。通过使用可以随时应用于任何打孔的模板,可以有效地管理与每种板类型相关的间隙参数。基于参数的冲头,支撑杆和冲头支架的创建有助于快速设计和制造非标准冲头形状。
工具细节。可以直接从实心工具组件生成一整套2D详细图纸。这包括完全可编辑的2D和等距截面视图,自动板尺寸和孔类型和位置表。可以从装配中的任何组件创建单个细节,并将其显示为3D渲染和2D绘图的混合。任何标准目录组件也将在剖视图中具有正确的详细信息表示。实体模型的更改将导致对2D视图的修改以及任何完全关联的尺寸。可以使用专用的装配管理工具将零件列表表项及其相应的气球参考添加到图形中。
制造模块。由于VISI的集成特性,可以使用特征识别来完成单个板的制造。通过正确的钻孔循环和2D铣削程序自动选择钻孔特征和孔径。对于更复杂的形式,VISI Machining可用于生成传统的高速和5轴刀具路径。复杂的冲孔和相应的实心冲头很容易制造,并与线切割EDM无缝集成。在从设计到制造的整个设计周期中将模型保持在相同的产品环境中将保证数据的一致性并极大地平滑设计过程。 VISI 2020.1 Release Notes: Progressive Die design
Upgrades to the new part unfolding technology provides the ability to work directly on the original solid model, supports blanking functionality, and manages parts with non-linear bends.
The sheet metal part recognition provides an improved graphical representation of the part, analysed by identifying bends, planar faces and features. Different face types can be set, to be considered for the blanking process. The new technology allows linear blank unfolding and flange unfolding to be combined into a single functionality. With linear bends, the system will unfold using the linear bend unfolding technology, while flange areas unfold using the FEA unfolding solution. And coining faces can also be unfolded as part of the same process.
The major advantage of the new technology is the associativity provided with the original model during the die design process. It allows the original part to be modified, and changes to be automatically propagated on the banked part. This new feature allows all the linked parts to be rebuilt in reference to a modification done to the original part. This is extremely useful because it updates all the studied parts in a single click, and is a major time saving in the design and modification phase of a progressive die.
Stampack Xpress Interface
VISI 2020.1 provides a direct interface to Stampack Xpress, for die simulation.
Enhanced Reverse and Casting
The Reverse module has been enhanced with additional functionalities for both Reverse and Casting processes, including new features to support the scanning to surfaces generation.
Features such as radius generation from mesh, plane generation, adapt mesh on boundary, and sectional curves on mesh, provide greater benefit for the reverse process from point scanning to solid model generation. A new Best Fit feature aligns a stock model to the final solid model by setting tolerances on different faces. This is extremely useful for the casting market, as it allows the cast model to be scanned, achieving a best fit alignment with the final geometry, producing an optimised toolpath with reduced machining time. The stock model can then also be used for machining simulation purposes.
Compare Feature
The Compare feature has been improved to provide an enhanced graphical evaluation of the results, and to display distances between the scanned model and the final solid model. The enhancements achieved provide quality improvements to both processes as well as time saving from the scanning to the manufacturing process.
Mold Tool design
A new body to mold functionality has been introduced, which provides a quick solution to define the correct position and orientation of a plastic part on the tool. The feature allows the transformation of the model from the “car in line” position to the mold position, and to apply the required shrinkage value. The original position of the model can also be restored if modifications are required for the molding of the part. This is extremely useful especially, but not only, for the automotive market, as it provides a time saving for the mold design process.
5 Axis Deburring
A new automatic deburring function reduces the set-up time for that vital aspect of the overall process. Creating CAM operations on any arbitrary part geometry is relatively easy nowadays, as parts can be virtually designed, created and produced. However, once CAM is finished there is one last operation that is not yet automated, and is usually done manually after machining. Burrs occur on all parts that have straight edges or non-tangent outer surface topologies. They appear when the tool is chipping the metal off that edge. It’s an unwanted situation because it can destroy the functionality of the part and can even be a danger to the worker as it’s razor sharp.
The purpose of VISI’s deburring strategy is to provide an automatic finishing to the machined part’s sharp edges – an important phase of the manufacturing process for parts with no tangent surfaces. It creates a highly automated tool path to deburr sharp edge of a workpiece with a spherical tool. The tool is positioned in the bi vector of the automatically detected sharp edges. Automatic tilting and linking is then applied to avoid collisions. As the whole process is highly automated, this machining strategy significantly reduces deburring setup time.
5-Axis Autotilting
Also the 5-axis Autotilting capability has been enhanced in VISI 2020.1, with new smoothing options, based on a more sophisticated interpolation algorithm. This optimizes the contour while keeping the tilt angles in a limited range; resulting in a more fluent movement of the machine while milling the part.
Enhanced graphics
New graphical representations assist in validating the model for manufacturing purposes. The Undercut and Accessibility shading also identifies undercut areas during the design and modelling phases. “The advantage provided is the ability to validate a model for manufacturing purposes at an early stage in the design to manufacturing process,” concludes Marco Cafasso.
Website Home Page : www.visicadcam.com购买后,将显示帖子中所有出售内容。
若发现会员采用欺骗的方法获取财富,请立刻举报,我们会对会员处以2-N倍的罚金,严重者封掉ID!
此段为出售的内容,购买后显示
1. Install Vero application including CLS
2. Run Vero License Manager
3. Put lsevrc supplied to C:\ProgramData\Vero Software\CLS\_Your_PC_Lock_Code_\ directory (e.g. C:\ProgramData\Vero Software\CLS\N14--1YE3QYP93Q7HMTT\)
PS: to speed up Vero app load a bit you can delete unnecessary licenses from lservrc. Each product license block is marked there.
- TEAM MAGNiTUDE 2019 -