Altair HyperWorks 2019.1.5 | 9.2 Gb
Altair推出HyperWorks 2019.1,提供全新的一流技术,以设计和优化高性能,高效和创新的产品。 Altair HyperWorks 2019 - 评论: 我们全面的开放式CAE平台不断扩展可用于产品开发过程每个阶段的解决方案,同时保持与所有主要CAD / CAE产品的接口以及用于开发自动化的广泛接口。 Altair HyperWorks 2019为所有工程师提供解决方案 - 从基于模型的系统设计和早期几何构思到详细的多物理场仿真和优化。此版本进一步实现了仿真驱动设计的承诺,构建了更多基于物理的设计解决方案,以提供客户所需的互连产品。 2019版本为市场上最广泛,最强大的物理解算器套件,新的节省时间的工作流程以及业界最佳建模和可视化平台的显着改进提供了令人兴奋的补充。 Altair HyperWorks Desktop 2019新功能: 将实体属性附加到模型浏览器 将与组件,属性和材料相关联的实体属性作为列数据附加到浏览器,以便快速有效地查看,编辑,排序和过滤。可以通过拖动重新组织列它们位于所需位置。在“包含”,“组件”,“材料”,“属性”和“装配”视图中,可以在各自的列中筛选实体属性。模型浏览器中的装配视图 使用模型浏览器中的新Assembly视图快速查看模型中所有装配的隔离列表。实体编辑器中的元数据实体编辑器中添加了一个新部分,以便于查看和编辑元数据。这适用于所有实体类型,并且还支持在相关浏览器视图中作为columndata附加。 Altair HyperWorks Solvers 2019新功能和亮点: Altair OptiStruct 2019产品亮点- 非线性轴对称分析(弹塑性和大位移非线性)- 通过JOINTG组合接头- 转子动力学的静态分析- 具有复特征值的转子动力学模式跟踪和转子能量输出分析- 象征性替代- 新的自由形状优化(基于GRID) - 测试版◦允许节点垂直移动到壳平面◦比传统的自由形状方法更灵活的形状变化◦支持壳和实体- 多模型优化(MMO) )增强:◦带有MMO Altair Radioss 2019亮点的DGLOBAL Radioss 2019版为Arbritrary Lagrangian和Eulerian(ALE)应用提供了一种新的多材料。该材料与所有状态方程(EOS),任何流体ALE材料兼容,可与砖或线性四面体元素一起使用。该材料使用新的有限体积法求解器,该解算器使用简单,更快速,更准确并确保节能。该材料法提供了必要的边界条件,流体结构接触界面和初始化选项。该材料可用于具有3个节点或4个节点实体单元的2D轴对称和平面分析。此外,还有新的选项可用于映射1D或2D的结果这种新的多材料/ MAT / LAW151的2D或3D模型。现在可以使用边界元法(BEM)计算水下爆炸(UNDEX)。该选项允许在没有流体网格的情况下快速计算潮湿表面结构上的压力场,导致远场水下爆炸。基于Barlat YLD2000配方的新材料可用于固体元素。基于Christian Alter配方的挡风玻璃的X-FEM新故障模型现在可用于壳单元。这种材料提高了挡风玻璃模型失效的准确性。子模型可以在其他子模型中定义,并且可以在子模型中使用更多选项。Altair MotionSolve 2019亮点 优化和设计功能,允许您综合和优化机制,并进行设计研究。MotionSolve中的核心求解器现在支持计算设计灵敏度,可用于直接运行优化研究,而无需调用其他软件。Altair HyperXtrude 2019新功能 金属挤压 - 轴承区域扼流圈和浮雕为了研究不同扼流圈和后角的影响,求解器和界面都增强了在平行轴承啮合的模型上应用阻塞和浮雕。用户可以指定扼流圈长度,扼流圈角度,释放长度和后角。即使几何图形在CAD数据中没有阻塞或浮雕,该值也将应用于轴承摩擦模块中。-自动报告生成解算器将自动为配置文件鼻锥分析创建报告。报告生成器拥有专家系统,可以捕获我们多年来积累的知识,帮助客户分析和优化挤出模头。这里最重要的特征是流动网络图,用于解释材料流动和通过不同部分的热传递。此报告采用PDF格式。这解释了模具的不同方面,材料在挤出过程中如何流动以及对挤出负荷,温度变化,流动不平衡和生产率的影响。 聚合物挤出 - 停留时间求解器计算流场的停留时间。它被增强以解决死区和死区(墙上所有节点的元素)并帮助用户正确地可视化该结果。 Altair HyperWorks CFD 求解 器2019亮点 Altair AcuSolve 2019亮点AcuSolve v2019带来了新的辐射模型,两个新功能,以改善用户工作流程和基于newHyperMesh的教程。此外,AcuConsole与其他Altair工具之间的Parasolid几何兼容性得到了改进。- 离散纵坐标辐射模型:提供通过参与媒体模拟辐射同时考虑方向效应的方法。- 自动墙面处理:简化一般模型设置的过程。- Thermal shell命令:改进定义热壳元素集的过程。- 几何兼容性:AcuConsole可读的Inspire和HyperMesh(最低版本21.0)的Parasolid输出。Altair nanoFluidX 2019亮点 nanoFluidX是一种基于拉格朗日粒子方法“平滑粒子流体动力学”(SPH)模拟单相和多相流的软件,由AltairEngineering开发和维护。该代码的目的是模拟难以或不可行的复杂流动。处理使用经典CFD方法,如有限体积方法。SPH的主要优点是在没有物理耗散的情况下保持质量和动量(线性和角度)。由于粘性剪切效应和颗粒的精确平流。因此,SPH在处理自由表面流动以及具有复杂物理现象的多相流动方面非常有效,例如表面张力或界面传输过程。亮点:- SPH弱可压缩代码。- 独特的数值解决方案,为工业SPH代码带来前所未有的准 - 自由表面和高变形流体流动。- 无网格方法,简化了预处理。- 多相流。- 曝气 - 粘度模型。- 温度方程和粘度 - 温度依赖模型。- 表面张力模型。- 流体 - 固体接触的粘附模型。- 固体的固定运动。- 被动刚体运动(如流体刚体动量交换)。- 创建和优化用于图形处理单元(GPU)集群,使迭代速度极快。 About About Altair HyperWorks. Altair HyperWorks is the most comprehensive open-architecture simulation platform, offering bestin-class technologies to design and optimize high performance, efficient and innovative products. Altair HyperWorks includes finite element modeling, analysis and optimization for structures, fluids, multibody dynamics, electromagnetics and antenna placement, model-based development, and multiphysics. Users have full access to a wide suite of design, engineering, visualization, and data management solutions from Altair and its technology partners. Website Home Page : www.altairhyperworks.com 产品开发每个阶段的解决方案我们全面的开放式CAE平台不断扩展可用于产品开发过程每个阶段的解决方案,同时保持与所有主要CAD / CAE产品的接口以及用于开发自动化的广泛接口。Altair HyperWorks为所有工程师提供解决方案 - 从基于模型的系统设计和早期几何构思到详细的多物理场仿真和优化。此版本进一步实现了仿真驱动设计的承诺,构建了更多基于物理的设计解决方案,以提供客户所需的互连产品。
为何选择HyperWorks?Altair HyperWorks
是最全面的开放式架构仿真平台,提供最佳的一流技术来设计和优化高性能,高效和创新的产品。2019版本为市场上最广泛,最强大的物理解算器套件,新的节省时间的工作流程以及业界最佳建模和可视化平台的显着改进提供了令人兴奋的补充。
注册由CTO James Dagg主持的HyperWorks 2019网络研讨会简介现在注册
专家和兼职分析师的新工具Altair SimSolid通过在几秒到几分钟内对原始的,未简化的CAD装配体进行结构分析,使设计师和工程师的工作效率更高。Altair HyperLife通过易于学习的静态,瞬态和振动负载下的疲劳寿命解决方案,帮助客户快速了解潜在的耐久性问题。
什么是新的
增强的用户体验您的设计师,工程师和CAE专家现在可以在一个直观且一致的用户体验中工作,同时发布一组用于几何创建,编辑,变形和网格划分的新工作流程。探索新的HyperMesh工作流程
更多优化和物理工作流程广泛的求解器和工作流程增强功能使您能够通过优化和多物理场模拟来驱动更多设计,这些模拟可以为所有制造方法提供相互作用的结构,机械,热,电磁和流体行为。
Altair AcuSolve 2019 Release Notes
Highlights AcuSolve v2019 brings a new radiation model, two new functions to improve user workflow and new HyperMesh based tutorials. In addition, Parasolid geometry compatibility between AcuConsole and other Altair tools has been improved. • Discrete ordinate radiation model: Provides means to simulate radiation through participating media while accounting for directional effects. • Automatic wall treatment: Streamlines the process of general model setup. • Thermal shell command: Improves the process of defining thermal shell element sets. • Geometry compatibility: Parasolid output from Inspire and HyperMesh (minimum version 21.0) readable by AcuConsole.
New Features Discrete ordinate radiation model While the previously released P1 radiation model reduces the radiative transfer equation to a single partial differential equation, the discrete ordinate model computes radiation for a given finite number of ordinate directions, selectable by you. This model is fully coupled with the flow solver and allows for zero absorptivity of participating media. Automatic wall treatment Automatic wall treatment, first released as a new type (= auto_wall) under SIMPLE_BOUNDARY_CONDITION with v2018, greatly simplifies the model setup. This feature processes the model and automatically handles the specification of internal and external wall boundaries, moving and stationary surfaces and interface surfaces. Thermal shell command Previously a manual function, with v2019 you now have access to the THERMAL_SHELL command from within the input deck. With this command the same flexibility is available to create shell elements of varying layers and composition without the manual selection on the model. In addition, because thermal shells are created at runtime, a model is always available in its preshell state. AcuShapesConvert script This new script is offered to facilitate the visualization of previously created .xsp, .ysp, .zsp or .xyzsp files, used with AcuSolve’s integrated optimization feature. The file names are given as input and a shape file of the TSHAPE format can be written out and imported into HyperMesh for visualization. Design variable values can optionally be applied to the shapes to view a particular state of the shape definition. Tutorial additions Three new tutorials have been added for Dispersed Multiphase, Humidity and P1 Radiation. All three tutorials are HyperMesh based.
HyperMesh based tutorial conversions Fifteen tutorials, previously offered only via the AcuConsole interface, are now offered based on the HyperMesh workflow. • ACU1000: HyperWorks UI Introduction • ACU2000: Mixing Elbow Steady • ACU3100: Mixing Elbow Heat Transfer • ACU3101: Mixing Elbow Transient • ACU3200: Greenhouse Radiation • ACU3203: P1 Radiation • ACU3300: Heat Exchanger • ACU4000: Dam Break • ACU4001: Filling Tank • ACU4002: Sloshing Tank • ACU4100: Dispersed Multiphase • ACU4200: Humidity Modeling • ACU5000: Blower Steady • ACU5100: Fan Component • ACU7001: Shape Optimization
Enhancements Improvements to level set multiphase Immiscible multiphase simulation results provide a sharper interface definition through the levelset_bfecc option. Improvements over the earlier levelset option include: improved handling of high aspect ratio elements, more accurate interaction with wall surfaces, and maintaining high accuracy at higher CFL numbers.
Known Issues The following known issues will be addressed in a future release as we continuously improve performance of the software: • New features added to the AcuSolve user profile are not currently supported by the .inp reader. You should not import input decks written from AcuConsole or from HyperMesh 2019.
Resolved Issues • Parasolid v21.0 or later files written from Inspire can now be read into AcuConsole. • File format for .xyzsp files written from HyperMesh corrected. • Corrected an issue with mass flux inlet specification for multiphase simulations. • Resolved an issue with running AcuSolve from a shared, remote disk installation. • Previous limit of 512 SURFACE_OUTPUT commands has been removed; you can now specify as many as desired. • Support for amsmpi has been discontinued.
Altair nanoFluidX 2019 Release Notes
nanoFluidX is a software to simulate single- and multi-phase flows based on the Lagrangian Particle Method "Smoothed Particle Hydrodynamics" (SPH) and is developed and maintained by Altair Engineering. The purpose of this code is to simulate complex flows that are difficult or infeasible to handle using classical CFD approaches such as Finite Volume Methods. The main advantages of SPH are the conservation of mass and momentum (linear and angular) in the absence of physical dissipation e.g. due to viscous shear effects and the exact advection of the particles. As a consequence, SPH is very powerful in dealing with free-surface flows as well as multi-phase flows with complex physical phenomena such as surface-tension or interfacial transport processes.
Highlights • SPH weakly compressible code. • Unique numerical solutions bringing unprecedented accuracy among industrial SPH codes. • Free-surface and high-deformation fluid flows. • Meshless approach, leading to simplified pre-processing. • Multi-phase flows. • Aeration-viscosity models. • Temperature equation and viscosity-temperature dependence models. • Surface tension models. • Adhesion models for fluid-solid contacts. • Defined motion of solid bodies. • Passive rigid body motion (as in fluid-rigid body momentum exchange). • Created and optimized for use on clusters of Graphical Processing Units (GPUs), making it extremely fast.
New Features Optional use of low-dissipation 1st order Riemann solver Greatly improves accuracy and the representation of the pressure field.
Note: This feature is considered experimental when used in multiphase mode.
Moving Least Squares correction for gradients Further improves accuracy. New optional particle position correction scheme APD (Artificial Particle Displacement) nanoFluidXcompanion (nFXc) A post-processing tool for converting SPH particle data to a mesh-based data for easier treatment and visualization in ParaView.
Aeration-viscosity models Account for the change of viscosity as a function of the air entrapment. Has beneficial influence on the torque prediction, especially in cases where torque comes mostly from shear stress. Primitive adhesion model Adhesion models which depend on an adjustable numerical parameter. Though it improves the capability of capturing film formations, the model has to be tuned to the experimental results. Monitoring probes Observe the flow at a specified location for any physical property. Circular inlets Improved motions Improved impose regions (momentum sources) Fluid Contact Time (FCT) Show contact time history between solid elements and a chosen fluid, which is useful for qualitative analysis of oil supply and lubrication. Operational modes Allow for a “single command setup”, depending on what is the required level of speed/accuracy ratio.
Enhancements Supported Platforms All Unix-based OS with GCC newer than 4.4.7 and GLIBC 2.12 (RHEL 6.x and 7.x and compatible Scientific Linux, CentOS, Ubuntu 14.04 and 16.04, OpenSUSE 13.2, and so on.) NVIDIA CUDA 8.0 and OpenMPI 2.1.5 – shipped with the binary.
Current Limitations • Surface tension coefficient for single phase flows requires tuning, as no universal single phase surface tension model exists. • Adhesion coefficient needs to be calibrated against experimental results or visually estimated. • Large negative pressures cannot be accurately handled by the current weakly compressible formulation without total particle volume preservation.
Resolved Issues • Improved robustness of the restart (disappearing phases at rank borders are addressed). • Planetary motion – rotation around y axis is now fixed. • Fixed particle overlapping check, so that it shows consistent numbers between phases.
Altair ultraFluidX 2019 Release Notes
New Features Mesh import You can now reuse an existing discretization from a previous ultraFluidX simulation to skip the meshing step and save computational time. Increased performance Simulation performance has increased due to internal code restructuring and a new data structure for the wall modeling.
Enhancements Velocity information on rotating and moving surfaces Velocity information is now displayed on rotating and moving no-slip walls in the surface data to be able to visualize the correct setting of rotating and moving boundary conditions. Sectional force coefficients in y- and z-direction Force coefficient output has been enhanced with full sectional coefficients in y- and z-direction, according to a user-specified number of sections. This supersedes the previously available z-split of the force coefficient output. Averaged mass flow included in the summary Averaged mass flow files are now created, and report the averaged mass flow per porous medium in the simulation summary file. Improved surface mapping at the transition of refinement levels The method used for evaluating macroscopic data at the transition of refinement levels for the surface mapping has been improved. This yields a better representation of surface data in areas where the grid is refined near the surface of the obstacle. Possibility to specify start iterations for all output categories You can now specify when to start the output for each of the available output categories. This feature can be used to generate high-frequency output for a specific part of the domain or the full volume data once the initial transient phase is completed. Selection of output variables You can now select the field variables that should be included in the output. Monochromatic acoustic point source A monochromatic acoustic wave with prescribed amplitude and frequency can now be injected into the simulation. Probe output in sub-iterations Probe output now also is enabled in sub-time steps instead of the coarsest iteration only. This can be used to extract high-resolution results for acoustic analyses. In the same breadth, buffers in probe output and drag/lift files now are flushed in every iteration.
本部分内容设定了隐藏,需要回复后才能看到